Phenylboronic Acid-Functionalized Layer-by-Layer Assemblies for Biomedical Applications

نویسندگان

  • Baozhen Wang
  • Kentaro Yoshida
  • Katsuhiko Sato
  • Jun-ichi Anzai
چکیده

Recent progress in the development of phenylboronic acid (PBA)-functionalized layer-by-layer (LbL) assemblies and their biomedical applications was reviewed. Stimuli-sensitive LbL films and microcapsules that exhibit permeability changes or decompose in response to sugars and hydrogen peroxide (H2O2) have been developed using PBA-bearing polymers. The responses of PBA-modified LbL assemblies arise from the competitive binding of sugars to PBA in the films or oxidative decomposition of PBA by H2O2. Electrochemical glucose sensors have been fabricated by coating the surfaces of electrodes by PBA-modified LbL films, while colorimetric and fluorescence sensors can be prepared by modifying LbL films with boronic acid-modified dyes. In addition, PBA-modified LbL films and microcapsules have successfully been used in the construction of drug delivery systems (DDS). Among them, much effort has been devoted to the glucose-triggered insulin delivery systems, which are constructed by encapsulating insulin in PBA-modified LbL films and microcapsules. Insulin is released from the PBA-modified LbL assemblies upon the addition of glucose resulting from changes in the permeability of the films or decomposition of the film entity. Research into insulin DDS is currently focused on the development of high-performance devices that release insulin in response to diabetic levels of glucose (>10 mM) but remain stable at normal levels (~5 mM) under physiological conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Harmonic Generation Diagnostic of Layer by Layer Deposition from Disperse Red 1–Functionalized Maleic Anhydride Copolymer

Layer-by-layer (LBL) electrostatic assembly of poly-electrolytes is proving to be an increasingly rich and versatile technique for the formation of multilayered thin films with a wide range of electrical, magnetic, and optical properties. In the present work we synthesized a new nonlinear optical (NLO) maleic acid copolymer containing Disperse Red 1 moieties, built-up multilayer assemblies by a...

متن کامل

Water-based Double Layer Functionalized Iron Oxide Nanoparticles for Enhanced Gene Delivery Applications

Iron oxide nanoparticles (magnetite (Fe3O4), hematite (Fe2O3)) have been received increasing attention in drug and gene delivery. In this work, water-base double layer functionalized iron oxide nanoparticles (DL-IONPs) were designed and prepared of a biodegradable, biocompatible carrier by co-precipitation method with high DNA loading capacity due to self-assembly of a second organic layer. The...

متن کامل

Phenylboronic acid functionalized gold nanoparticles for highly sensitive detection of Staphylococcus aureus.

Herein, we report a phenylboronic acid functionalized gold nanoparticle (GNP)-based colorimetric assay for rapid detection of Staphylococcus aureus (S. aureus) with high sensitivity. In this approach, GNPs can bind to S. aureus by the reaction of phenylboronic acid with the cis-diol configuration in glycans on the bacterial surface, providing a colorimetric readout of the binding event. Using t...

متن کامل

Design and optimization of poly lactic acid/bioglass composite screw for orthopedic applications

However, problems such as osteoporosis due to high elasticity of metals relative to bones, and local infections and systemic problems caused by releasing metallic ions have motivated research on replacing metallic screws with non metallic ones. In this study, the composite containing poly-l-lactic acid and bioactive glass fibers were considered for the design of the screw using ABAQUS software ...

متن کامل

Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid.

Hydrogel optical fibers are utilized for continuous glucose sensing in real time. The hydrogel fibers consist of poly(acrylamide-co-poly(ethylene glycol) diacrylate) cores functionalized with phenylboronic acid. The complexation of the phenylboronic acid and cis-diol groups of glucose enables reversible changes of the hydrogel fiber diameter. The analyses of light propagation loss allow for qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017